首页
 师范类专业认证
 单位概况
 单位介绍
 领导班子
 院长
 副院长
 副院长
 职能部门
 办公室
 教育评价数智中心
 基础教育评估所
 职业教育与成人教育评估所
 高等教育评估所
 教育质量监测中心
 教育综合评估所
 教育评价改革办公室
 学术组织
 教育部教育评价改革研究基地办公室
 重庆市基础教育评价研究中心
 重庆市家校社共育评估监测中心
 经合组织国际学校评价研究中心
 重庆市中等职业技术教育质量监测中心
 重庆市研究生联合培养基地
 重庆市“一带一路”教育评价中心
 重庆市教师评价研究中心
 重庆市教育评估院学术委员会
 编辑部
 挂牌机构
 重庆市“一带一路”教育评价中心
 重庆职业技术教育质量监测中心
 重庆市家庭教育监测中心
 重庆市研究生联合培养基地
 经合组织国际学校评价研究中心
 联盟组织
 中泰职教联盟
 评估纪实
 历史回顾
 办公场景
 党建工作
 党建要闻
 党建动态
 党风廉政
 党纪学习
 主题教育
 党员活动
 教育评估
 基础教育评估
 职成教育评估
 高等教育评估
 综合教育评估
 教育认证
 高职专业认证
 高职课程认证
 国际课程认证
 民办学校认证
 教育监测
 学前教育质量监测
 基础教育质量监测
 职业教育质量监测
 高等教育质量监测
 家校共育质量监测
 学术研究
 研究动态
 要报·专报·报告
 教育评估与监测杂志
 标准建设
 成果展示
 成果宣传视频
 成果有关的论文全文(32篇)
 成果有关专著及教材的关键信息(16部)
 学术事务
 组织机构
 政策制度
 研讨交流
 合作交流
 国际合作交流
 港澳台合作交流
 云生分享
 资料下载
 教育评价改革典型案例

[转载]广义线性模型(GLM)


     广义线性模型(generalized linear model, GLM)是简单最小二乘回归(OLS)的扩展,在OLS的假设中,响应变量是连续数值数据且服从正态分布,而且响应变量期望值与预测变量之间的关系是线性关系。而广义线性模型则放宽其假设,首先响应变量可以是正整数或分类数据,其分布为某指数分布族。其次响应变量期望值的函数(连接函数)与预测变量之间的关系为线性关系。因此在进行GLM建模时,需要指定分布类型和连接函数。

           在R中通常使用glm函数构造广义线性模型,其中分布参数包括了binomaial(两项分布)、gaussian(正态分布)、gamma(伽马分布)、poisson(泊松分布)等。和lm函数类似,glm的建模结果可以通过下述的泛型函数进行二次处理,如summary()、coef()、confint()、residuals()、anova()、plot()、predict()

     

    一、Logistic回归

           Logistic回归中假设响应变量服从二项分布,参数family设置为binomial,连接函数link设置为logit,我们以AER包中的Affairs数据集作为例子。该数据集是关于婚姻出轨,其中affairs变量表示出轨次数,数据集中还包括结婚时间、教育、宗教等其它变量。由于affairs为正整数,为了进行Logistic回归先要将其转化为二元变量。

     

    1 data(Affairs, package=;AER;)

    2 Affairs$ynaffair[Affairs$affairs < 0] <- 1

    3 Affairs$ynaffair[Affairs$affairs < 0] <- 0

    4 Affairs$ynaffair <- factor(Affairs$ynaffair,

    5 levels=c(0,1),

    6 labels=c("No","Yes"))

    7 model.L <- glm(ynaffair ~ age   yearsmarried   religiousness  rating, data=Affairs, family=binomial())

    8 summary(model.L)

           

           若样本观测值变异性过大,即出现了过度离散现象,此时仍使用二项分布假设就会影响系数检测的显著性。那么补救的方法是使用准二项分布(quasibinomial)。首先要检测样本是否存在过度离散现象,方法是用残差除以残差自由度,若超过1则意味着过度离散。那么将family参数改为quasibinomial。

           其它和Logistic回归相关的函数还包括:robust包中的glmRob函数实施稳健GLM;mlogit包中的mlogit函数对多分类变量进行logistic回归;rms包中的lrm函数对顺序变量进行Logistic回归。


    二、Poisson回归 

           泊松回归假设响应变量服从泊松分布,而连接函数为log函数。仍以前面未转化的Affairs数据集为例。建立模型后通过coef函数来提取模型系数,因为泊松回归中响应变量经过了log函数变换,所以对系数进行指数变换可更好的对结果进行解释。从中观察到,在其它变量不变前提下,结婚时间增长1年,那么出轨次数期望值则变为之前的1.11倍。

     

    1 model.P <- glm(affairs ~ age   yearsmarried   religiousness  rating, data=Affairs, family=poisson())

    2 exp(coef(model.P))

    (Intercept)         age  yearsmarried religiousness        rating15.6175253     0.9733061     1.1163656     0.6971279     0.6691823

           

           同样,在进行泊松分布也要考虑过度离散现象。其检测方法同样是残差除以其自由度。若确定过度离散存在,则要将family参数设置为准泊松分布(quasipoisson)。



重庆市教育评估院 重庆市基础教育质量监测中心

电话传真:023-67715619 电子邮箱:cqspgy@126.com

地址:重庆市江北区欧式一条街兴隆路20号 邮编:400020